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Abstract

Cubic planar curves are used frequently to fit planar lists of points. Some

authors have suggested methods to construct these curves to utilize the

tangent information at the points. The heart of these methods is to find

the planar cubic going through three points and the associated tangent-

directions. We show that the planar cubics can be found by solving

a cubic equation. The result is combined with a previous scheme to

produce a better fitting method.

1 Introduction

A parametric curve is a map from a one-dimensional domain space to a three-

dimensional space. A planar curve is a curve that lies on a plane. A cubic
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curve in this paperdenotesa polynomial curveor a rational polynomial curve
(maybe piecewisecontinuous)whosedegreeis cubic.

During geometric processingwith computers,at times it is desirableto fit
parametric curvesthrough a list of points. The points may come from the
numerical solution of a set of partial differential equations, from sampling
along an implicit or high order curve, or from a surface-surfaceintersection
calculation. Thedata points areconsideredto be "exact," andthe fitted curves
are required to beas closeto the data points aspossible.

Tangent-directionsof the curvesat the data points arefrequently readily avail-
ablefrom the computationprocessthat generatedthe points. It is desirableto
utilize this tangent-direction information to improvethe accuracyof the curve
fitting for points betweenthe supplieddata points.

In order to capture all the characteristicsof the curvesand to ensureenough
accuracyin the computation, oversamplingis a commonschemeusedby the
numericalmethodscreatingthe datapoints. For theconvenienceof subsequent
data storageand handling, it is desiredthat the curvesbe representedby a
conciserepresentationwith lessdata. Traditionally, the data fitting problem
hasbeenhandledby passingacubicsplineinterpolation curvethrough thedata
points and, maybe,through the tangent-directionsat the sametime [1]--[4].
Suchdirect interpolation methodsdo not provideanydata reduction. Oneof
the goalsof our fitting method is to providedata reduction. In particular, it is
hopedthat by usingthe tangent-directioninformation, a higherdata reduction
ratio can beachievedwhile maintaining the sameaccuracy.

In [5], a sequenceof data points in a plane is first fitted with a G 1 piecewise

cubic curve, with a cubic piece between every two adjacent data points, and

then the number of cubic pieces is reduced by merging adjacent pieces. Two

pieces are merged together to form a new cubic piece if the new cubic is close

enough to both of the original pieces. The new cubic is found to pass through

the two non-shared endpoints of the two adjacent cubics, through a third point

located on the curve at around the midpoint of the original cubics, and through
the tangent-directions at all the three points. An iterative method is used to
find the new cubic.

In [6], a sequence of data points in three-space is fitted by a divide-and-conquer

strategy. The center of the algorithm is to find the cubic, with known endpoints

and end tangent-directions, passing through a third point in space. It is proved

in [6] that, under certain conditions, in three-space there exists a unique cubic

going through the third point at a parameter value between 0 and 1. However,

when all the points and tangents are in a plane (the planar case), there is one

less equation than unknowns. To provide the additional equation, in [6] the



parametervalueat the third point wasassumed.However,it seemsnatural to
usethe tangent-directionat thethird point to provide the additional equation.
In this paper, we investigatethe problemof utilizing this tangent information.
It shouldbenoted that evenwhenthe data points are in three-space,with the
divide-and-conquerstrategy in [6], it is still necessaryto handle planar cases
if a portion of the data points lies on a plane.

2 Problem Statement

The problem in finding the new cubic in [5] or the planar case problem in [6]

can be stated as the following:

Given three points Po, P3, and P, and three unit vectors, to, tl, t2,

one at each of the points, respectively, find the parametric cubic that

has Po and P3 as endpoints, to and tl as end tangent-directions, goes

through P, and has tangent-direction t2 at P.

An illustration of the variables is in Figure 1.

If we write the cubic in the BSzier form, with P0 to P3 as its control points,

the problem can be restated as follows: find the inner control points, P1 and

P2, such that the cubic passes through P with direction t2, on condition that

P1 and P2 lie on the half lines given by t0 and tx, respectively.

The Bdzier curve can be written as:

C(u) = Po(Bg(u) + B_(u)) + _toB_(u) + _t,B_(u) + P3(B_(u) + B_(u)) (1)

where B3(u) = (3)ui(1- u) 3-; are the cubic Bernstein polynomials, and P1 =

Po + ato and P2 = P3 + 13q.

The above equation assumes, without loss of generality, that the cubic starts
at u=0. andendsat u=l.

A couple of issues must be addressed before the answer to the problem becomes

useful. First, we have to find a computationally efficient way to obtain the

cubic. Second, we have to know what kinds of solutions are possible from the

equations. The following sections address these issues.
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Figure 1: The cubic must go through the three points and tangent-directions.



3 Efficient Computation

In [5], the problem was formulated into two sets of equations. An iterative

method was used to solve the equations with the initial guess values of _ and/3.

For each iteration, it is required to solve a closest-point-finding problem for a

curve and to solve a 2-by-2 system of linear equations.

We formulate the equations differently and solve the equations directly with-

out iteration. First, the problem statement in Section 2 translates into the

following equations for the curve in (1):

P = Po(B3(_) + Ba(fi)) + cd0Bp(_) + flt,B_(£t) + P3(B3(_) + B33(_)) (2)

and

atz = (Pa - Po)B_(_) + c_to(B2o(_) - B_(_)) +/3t,(B_(_) - B_(_)), (3)

where 6 is a multiplier, B_(fi) = (_)_i(1 - fi)2-+ are the quadratic Bernstein

polynomials, and fi is the parameter at which the curve assumes P.

Without loss of generality, we can assume that the data is in the x-y plane.

Then, in the above set of equations, there are four unknowns: a, fl, 5, and fi,

and four equations: two for the x component and two for the y component.

To solve the equations, we define three more vectors:

= k x to (4)
{,=kxt, (5)
{2=_Xt2

where ]¢ is the z directional basis vector of unit length. We assume a right-

handed Cartesian coordinate system.

Performing dot products on equation (2) with {0 and {1 and on equation (3)

with {2 results in the following equations:

P" t-t = (Pa - Po)" t-l(Boa(fi) + B_a(fi)) + Odo. t-lBa(5) + P0" {1 (6)

P" {0 = (P3 - P0)" {0(B3(fi) + B3(_)) + fit,. {oBa(_t) + Po" to (7)

0 = (P3- Po).t:B_(ft)+_to.t2(B_)(ft)- Bl2(fi)) + fit1 • t2(B_(fi)- B_(/i)) (8)

By substituting _ and /3 from equations (6) and (7) into equation (8) and

expanding the Bernstein polynomial out, we can factor 3(1 - ,2)2fi 2 from the

resulting equation and arrive at the following quartic equation.



((P - Po) " {,)(to. {2) - 2((P- Po)'{o)(tl" G) +

(-3((P- Po)" {,) + 3((P - Po)" {o)(tl. {2))fi +

(6((P3 - Po)" {2)(to. t-l) - 3((P3 - Po)" tl)(to- t-2) + 6((P3 - Po)" t-o)(tl, t- ))fi2 +

(-12((P3 - Po)" t2)(to, t-,) + ll((P3 - Po)" {1)(to. t2) - 13((P3 - Po)' to)(tl. {2))fi 3 +

(6((P3 - Po)" {2)(to • {1) - 6((P3 - Po)" t,)(to, t-,) + 6((P3 - Po)" t-o)(tl. {2))fi 4 = 0

(9)

Equation (9) can be simplified by applying the following rules, which can be

obtained from equation (4) and vector algebra. For any i,j E O, 1,2,

t,.{j =t,.(k × tj) (10)
= -k(t, × tj)

= --tj . {i

t, x ij = t, x (k x tj) (11)
=(ti.tj)k-(ti.k)tj

=(t,.t,)k

and

(a . c)(b . d) - (a . d)(b. c) = (a x b) . (c x d) (12)

where a,b,c, and d are vectors, and the term (t_. ]c)tj in equation (11) is zero

since ti is on the plane.

For example, the coefficient of the quartic term of equation (9) can be simplified
to zero:

(6((P3 - Po)" i2)(to. {,) - 6((P3 - Po)" {,)(to. G) + 6((/93 - Po)" t-o)(t,- {2))(13)

= 6[((P3 - Po) × to)-(i2 × t-,) + ((P3 - Po)" to)(t,. [2)]

= 6[-((P3 - Po)" {o)-(t-2" t,) + ((P3 - Po)" t-o)(t,./-_)]

=0

After simplification, equation (9) becomes a cubic equation:

- [((P- Po)'{2)(tl'to)+((P-Po)'to)(t,'t2)l-

3[((P - Po)" i2)(to. {1)]fi +

3[((Ps - Po)" {,)(to. t-2)]fi 2 +

[((/93 - Po)" {,)(t2. t-o) + ((P3 - Po)" {o)(t_. {l)]fi 3 = 0

(14)



4 Solution Discussion

Equation (14) can be solved efficiently and analytically [7]. For a cubic equa-

tion with real coefficients, the equation has either one real root or three real

roots (with possible repetitive roots). Once fi is obtained, c_,/3, and 6 can be

computed from equations (6), (7), and (3), respectively. Since equation (14)

can have three real roots for fi, three sets of solutions (_, c_,/3, ¢_) are possible.

To be a valid solution set, the following conditions have to be met.

c_, 6 > 0 (15)

/3<0

e [0,11

To use the results on curve fitting as done in [5] or [6], either we have to prove

that there exists only one valid solution set under some reasonable conditions
or we need to handle the other two situations that could occur: none of the

solution sets satisfies the conditions, or more than one solution set satisfies the
conditions.

Two examples are given to illustrate the possible solution sets. The first exam-

ple has P0 = (0, 0), to = (.371391, .928477), Pa = (7, - 1 ), t l = (.351123, -.986329),

and P = (3, 3).

When t2 = (1,0), there exists three _ E [0, 1] but only one valid solution

set (_ = .391973,_ = 5.97567,/3 = -3.53817,5 = 2.69794). Figure 2
shows this curve.

When t_ = (.894427, .447214), there is no fi E [0, 1], hence, there are no
valid solutions.

When P = (2.5,3),t: = (1,0), there is one fi E [0,11 but there are no
valid solutions.

From this example we find that the existence of a valid solution is very sensitive

to both the tangent-direction t_ and the position of P.

The second example has P0 = (1,0), t0 = (0,1), Pa = (v/2/2, vf2/2), _1 :

(-v/'2/2, v/2/2), P = (.98465,.174538), and t2 = (-1.7454,.98465). Two sets

of valid solutions exist. They are (_ = .223347, c_ = .263335,/3 = -.267153, (5 =

.26) and (fi = .360237, a = .0828732,/3 = -.404803, 5 = .230394). This exam-

ple demonstrates that the solution is not unique: more than one cubic planar

curve can pass through the same three points and the same tangent-directions.

Figure 3 and Figure 4 show the two valid curves.



P

tQ

2 4 6 __tl

Figure 2: The only valid solution for t2 = (1,0).
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Figure 3: One of the valid solutions with (fi = .223347, c_ = .263335,/3 =

-.267153, (5 = .26).
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Figure 4: The other valid solution with (fi = .360237, a = .0828732,/3 =

-.404803, 6 = .230394).
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5 Fitting Examples

In this section, we apply the point interpolation method developed above to

curve fitting for a planar set of points with tangent-directions. We follow the

method in [6], briefly described below.

In [6] a divide-and-conquer process is applied consistently to divide the data

into sections; at the same time, each section is fitted with one rational cubic

B_zier curve. After the process is done, all the B_zier curves are connected

together to form a single C a curve.

During the divide-and-conquer process, given a set of points, if either the

control polygon for the fitting curve can not be obtained or the points can not

be fitted within a given tolerance, the points are divided into two equal sets,

and the fitting process is applied to each of the subsets. In rare cases when

only two points remain in the set, a single cubic curve is constructed, using

both the position and tangent information at the points.

To find the rational fitting curve for a given set of points, the method in [6]

constructs a cubic non-rational B_zier curve first. The control points of the

non-rational curve are taken as those for the rational curve. Fitting through

the points is done by adjusting the weights of the rational curve.

To obtain the non-rational curve, the cubic interpolating curve through each

data point is calculated, one curve per point; the non-rational curve is the av-

erage of the interpolating curves. If the interpolating curve for a point can not

be found, the curve is excluded from the averaging process. Under this scheme,

the fitting process will still proceed properly, even if the interpolating curves

for some of the points can not be found. In computing the interpolating curve,

a planar case is handled by estimating _ with a chord length approximation,

and the tangent-direction information at the data point is not utilized.

Instead of using an approximation method, we use the cubic non-rational

interpolating curve through the data point and the tangent-direction at the

point as the interpolating curve. When more than one valid interpolating

curve exists, we can either choose an arbitrary one or try to compare the

interpolating curves with the one from the neighboring point and choose one

that is consistent with the neighboring curve. The latter approach can be

done by comparing the as (and/3s) and choosing the one with similar as (and

/3s). The new fitting method is exactly the same as what is in [6] except when

computing the interpolating curves for planar cases. In the following examples,

an arbitrary interpolating curve is used when more than one exists.
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Figure 5: A rational fit of 101 points on a half-circle with 10 -a tolerance.

We sampled 101 points on a half-circle with unit radius. In Figure 5, these

points (shown as dots) and the associated tangent-directions are fitted with

a cubic non-uniform B-splines curve with three segments, when the given tol-

erance is 10 -3 . In Figure 6, 361 points (not shown) are sampled along an

intersection of a plane and a toms. The intersection curve is a quartic alge-

braic curve. The fitting tolerance is 0.01. The new method is used to fit the

spiral data in Figure 10 of [6]. The fitted curve is shown in Figure 7. The

points on the top portion of the figure lie on a plane.

Table 1 compares the number of segments in the fitted curves produced by

the new method (Method 1) and the method in [6] (Method 2). The data sets
in the above examples are used. Note that methods 1 and 2 are the same for

non-planar portions of the data.
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Figure 6: A rational fit of 361 points on the intersection curve of a plane and

a torus, with 10 -_ tolerance.

Toleran ce

No of Segs

Method 1

No of Segs

Method 2

Half-Circle

10 -3 10-6

3 19

4 25

Torus-Plane

10 -2 10-4

14 37

15 42

Spiral-Data

2.10 -1 10 -3

5 12

6 18

Table 1: Comparison of the sizes of the fitted curves.
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Figure 7: A rational fit of 51 points with 2.10 -1 tolerance.
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6 Conclusion

We have found a direct and efficient method to solve the problem of finding the

planar cubic curves through three points and the associated tangent-directions.

We have also proved, by examples, that multiple curves could pass through
the same set of data.

We compared this new method with a previous curve fitting method. Examples

show some improvement in reducing the sizes of the fitted curves by utilizing

the new method, in particular, when the tolerance for fitting is tight.

Our experience, from the above examples, has been that the case in which

only one valid solution exists happens most frequently. Moreover, the case in

which more than one solution exists occurs much more frequently than the
case in which no solution exists.
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